

Mission Profile

To conduct hydrologic experiments along an area of hypothesized Martian coastline both to gain scientific insight and to validate a UAV platform and corresponding technologies for subsequent human exploration.

Flight Profile

1. Enter parallel to "coast"

3. 1st VTOL stage

5. 2nd VTOL stage

7. Landed

Specifications

Length

Wingspan

Aspect Ratio

Wing Reference Area

Weight

Cruise Altitude

Cruise Speed

Range

Propulsion System

Thrust (Cruise)

Thrust (Takeoff)

1.82 meters

10.7 meters

7.49

15.2 meters²

271.5 kg

1000 meters

0.6 Mach = 145 m/s

190 kilometers

Mg-CO₂ rocket

100 Newtons

1962 Newtons

Instrumentation

Instrument	mass (kg)	Volume (cm ³)	Power (W)
Mini mass spectrometer	2	745	5
IMU	0.15	49	1.98
Altimeter	1.36	1060	16
Computer	4.8	3915	16
Probes (per)	2.4	2316	batteries
miniSAR	13.6	1310	225
Data transmission	1.85	2038	45.5
Video camera	1	666	6.5
Atmospheric sensing package	1	131	0.5
Total Volume	18991	cm ³	
Total Mass	35.68	kg	

Propulsion System

- Single 100 N centerline nozzle for cruise.
- Three 654 N nozzles for VTOL.
- "Semi-air breathing" Magnesium-CO₂ rocket.

Propulsion System

- Turbo pump recharges CO₂ while aircraft is landed.
- Magnesium kept in fluidized bed.
- Separate combustion chambers for each nozzle.

Structure

- All composites for weight reduction.
- Driving design factors:
 - High-g pull-up entry maneuver.
 - Landed position on Martian surface.

Aerodynamics

- Wing designed to trim out the aircraft.
- Airfoils blended along the span.

Wing Performance

Wing Performance

Performance

Performance Summa	ry	
Maximum Range	= 193 km	@ Cruise Velocity = 148 m/s
Flight Time	= 21.7 min	@ Cruise Velocity = 148 m/s
Cruise Altitude	= 1000 meters	Cruise Mach Number = 0.6

Longitudinal Stability	Short Period Mode	Phugoid Mode
Period (sec)	0.196	117.4
Angular frequency (rad/sec)	32.061	0.054
Damping factor	0.357	0.042
Time to half amplitude (sec)	0.061	305.85
Lateral Stability	Dutch Roll	
Period (s)	1.19	
Angular frequency (rad/sec)	5.28	
Damping factor	0.0064	
Time to half amplitude (sec)	20.4	

Launch, Transit, and Insertion

- Launched in a Zenit3SL by Sea Launch International.
 - Lower cost
 - Larger payload
- Hohmann transfer from Earth to Mars.
- Enters Martian atmosphere in an aeroshell.

Folding

- Uses "Loaf-shaped" entry vehicle.
- Scaled to fit into Zenit3SL.
- Two folds on each side of the wing.

Initial Designs

- Propeller driven craft
 - Unacceptable risk due to folding.
- Turbojet engine
 - Low density drove inlet to unacceptable size.
- One or two vertical stabilizers
 - Marginal stability advantage outweighed by weight and folding handicaps.

Conclusions & Recommendations

- Feasible technologies make an aircraft ideal for Martian exploration.
- Aircraft design extremely sensitive to small changes.
- More study should be done into landing.
- Further research into propulsion system could greatly increase performance.

Team Members

- Colin Bateson
- Adam Beerman
- Laine D'Augustine
- Kemit Finch
- Mark Gennaro
- Bernadette Goncz
- Ashley Hallock
- Andrew Kelley
- Melissa Meyers
- Nina Mohleji
- Jonathan Murphy
- An Nguyen

- Thaihuu Nguyen
- Jean-Noel Pederzani
- Jon Reifschneider
- Kris Shaner
- Allison Steinberger
- Steven Tangen
- Chris Teague
- Katherine Timpano
- Nicholas Von Bank
- Ben Warfield
- Doug Weber

Questions?

